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Abstract We propose a new method based on a Recursive Neural Network (RecNN)
for predicting polymer properties from their structured molecular representations. Rec-
NN allows for a completely novel approach to QSPR analysis by direct adaptive pro-
cessing of molecular graphs. This model joins the representational power of structured
domains with Neural Network ability to capture underlying complex relationships in
the data by a process of training from examples. To this aim, a structured representa-
tion was designed for the modelling of polymer structures. The adopted representation
can account also for average macromolecule characteristics, such as degree of poly-
merization, stereoregularity, comonomer distribution. To begin with, this model was
applied to the prediction of the glass transition temperature of (meth)acrylic polymers
with different degree of main chain tacticity. The results so far obtained indicate that
the proposed representation of polymer structure can convey information on both the
repeating unit structure and average polymer features. The ability of the proposed Rec-
NN method of treating this structured representation makes this method more general
and flexible with respect to standard literature methods. Moreover, the same model
can handle at the same time the Tg of polymer samples present in only one tacticity
form together with that of polymer with different stereoregularity.
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1 Introduction

Material performances must fulfil the stringent requirements of the diverse appli-
cation of modern industry. Copolymerization, chemical modification, and blending
allow for the production of a wide array of innovative polymeric products with tai-
lored characteristics. On the other hand, experimental testing of new materials is a very
expensive and time-consuming process. Consequently, the development of predictive
methods to assess the most promising candidates for specific applications has gained
urgency.

In time significant efforts have been spent on the development of Quantitative
Structure Property Relationships (QSPR’s) to predict physical, chemical, biological,
and technological properties of molecules. Traditional QSPR approaches, employ-
ing standard regression methods (from linear regression to standard neural network)
take as input fixed-size numerical vectors. As a consequence, all molecules must be
reduced to vectors of the same dimension through the selection and extraction of their
significant structural information.

The glass transition temperature (Tg) is often used as a benchmark of new methods
for the prediction of polymer properties. This choice is suggested by the availabil-
ity of a large number of experimental data. Additionally, it is well known that the
glass-rubber transition is of considerable technological significance. In fact, the Tg
determines the utilization limits of rubbers and thermoplastic materials. With respect
to the prediction of this property, two main approaches have been used: group additive
property (GAP) methods and systems that use molecular descriptors.

The additivity principle implies that a property, when expressed per mole of sub-
stance, can be calculated by summation of either atomic, or group, or bond contri-
butions. Van Krevelen applied the GAP theory to nearly 600 polymers to derive the
Tg group contributions [1]. About 80% of the calculated Tg’s differed less than 20 K
from experimental values. GAP approaches can be applied only to polymers con-
taining previously investigated structural groups. Koehler and Hopfinger [2,3] tried
to overcome this limitation by combining the group additivity approach with molec-
ular modelling. A four-regression correlation with 12.8 and 16.6 K standard devia-
tion (S) was obtained for 12 poly(alkyl acrylate)s and 20 poly(alkyl methacrylate)s,
respectively [2].

On a parallel research line, several authors developed different methods based on
molecular descriptors. Perhaps the most widely referenced model is the one pro-
posed by Bicerano [4]. Bicerano built a QSPR model that combined a weighted
sum of structural descriptors (topological parameters derived from atom connectiv-
ity indices) along with the solubility descriptor of each polymer. Application of a
linear regression procedure to 320 polymer produced a model with S = 24.65 K
and 0.9749 correlation coefficient (R). However, the prediction power of the above
methods was not validated by an external test set. Waegell and co-workers built
a model that is a combination of atomistic simulation and classical QSPR meth-
ods [5,6]. This model is called EVM (Energy, Volume, Mass) because of the three
descriptors used in the QSPR equation. When applied to a training set of 16 ali-
phatic acrylic and methacrylic polymers, the standard deviation for a 12 polymers
test set was 13 K. A linear correlation between Tg and the logarithm of the
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effective side chain diameter/length ratio was proposed by Gao and Harmond [7].
The regressions obtained for nine poly(alkyl methacrylate)s and for five poly(alkyl
acrylate)s gave in both cases a standard deviation of 7 K. Katritzky and co-work-
ers calculated structural descriptors for the middle unit of a three-repeat units string
[8]. A five-parameter model applied to 88 polymers produced R2 = 0.754 and
S = 32.9 K. Almost the same data set (84 polymers) was employed by Garcia-
Domenech and de Julián-Ortiz [9]. The best regression was obtained with 10 vari-
ables (all graph-theoretical indices) and molar Tg’s as dependent variable. All the
descriptors used were calculated for the molecular monomer structure. The mean
regression error for the training set and the cross validation were 12.7 and 15%,
respectively.

Joyce and co-workers used feed-forward neural networks for the Tg prediction of
360 homopolymers by using an encoding of the SMILES symbols for a vector-based
monomer representation [10]. Their model predicted the Tg of a polymer test set
covering a wide structure range with S ≈ 35 K. Sumpter and Noid [11,12] used a
vectorial representation of the polymer repeating unit, based on descriptors obtained
by combining different approaches [2,13–15]. Tg values were calculated with S ≈
9 K by applying a feed-forward neural network to 320 polymers from 23 different
classes. Mattioni and Jurs used descriptors of different types of either the monomer
or the polymer repeating unit [16]. The best model was obtained by using topological
descriptors of the repeat unit structure. This model, applied to 251 polymers, gen-
erated S = 21.1, 25.2, and 21.9 K for training, cross-validation, and prediction sets,
respectively.

In spite this progress, the prediction of polymer properties starting from their struc-
ture is a challenge still open. As it can be easily seen from the above survey, the main
aim of any of the reported methods was the prediction of polymer properties start-
ing from the molecular 2D graph. However, the only way to describe input data by
using standard regression tools is to provide numerical variables expressing molecular
descriptors through measurements or calculations. Because of computational limita-
tions, the calculations of many types of standard descriptors are not carried out directly
for high molecular weight molecules. Moreover, these models cannot account for aver-
age polymer characteristics, which often have a direct effect on the target property.

Direct structure treatment enables to by-pass the limitations associated with the
use of molecular descriptors. The central point of our analysis stems from the fact
that molecules are not simply fixed-size vectors of numbers but they are more nat-
urally described via a varying size structured representation. Differing from other
approaches, the method we propose is based on a Recursive Neural Network (RecNN)
that can directly input variable-size labelled structures, such are Directed Positional
Acyclic Graphs (DPAG) and rooted trees.

In the present paper, we propose a general and flexible representation of macromo-
lecular structures in terms of labelled trees. This representation, which allows for ana-
lyzing different polymer classes simply from the 2D graph of the repeating units, can
be extended to deal uniformly with both homopolymers and copolymers. Moreover,
information accounting for the average characteristics of the macromolecules (degree
of polymerization, main chain tacticity, monomer distribution, molecular weight, etc.)
can be introduced in the input data. In its first implementation, this method was used
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for the prediction of the glass transition temperature of a set of about 170 acyclic
polymer samples of different stereoregularity. This set included alkyl, aminoalkyl,
cyanoalkyl, fluoroalkyl, hydroxyalkyl, nitratoalkyl, oxaalkyl, sulfinylalkyl, thialkyl,
cyanooxaalkyl, cyano-thiaalkyl, fluorooxaalkyl, and hydroxyoxaalkyl (meth)acrylate
polymers, poly(meth)acrylamides, and a few α- and β-substituted poly(meth)acrylics.

2 Method

The adopted recursive neural network is a generalization of the well-known feed-for-
ward neural networks for dealing with variable-size structured data e.g. labelled trees
and labelled DPAGs (Directed Positional Acyclic Graphs) [17]. In such structures,
for each vertex (or node) a total order is defined on the edges leaving from it and
a position is assigned to each edge. We assume a bounded out-degree and that each
DPAG possesses a super-source, i.e. a vertex s such that every vertex in the graph can
be reached by a directed path starting from s. Labels are tuples of variables attached
to vertexes. In particular, we consider a sub-class of these structures, the k-ary trees
(trees in the following), which are rooted positional trees with finite out-degree k, i.e.
k is the maximum number of children for each node.

The RecNN exploits a recursive encoding process, which mimics the morphology
of each input hierarchical structure (such as rooted trees). For each vertex of the input
structure, the model computes a numerical code by using information of both the
vertex label and, recursively, the code of the sub-graphs descending from the current
vertex. This process computes a code of the whole molecular structure. The code is
then mapped to the output property value. The encoding and mapping free parameters
of the neural network are adapted to the task through the learning algorithm on the
basis of the training examples. By this process, RecNN models a direct and adap-
tive relationship between molecular structures and target properties. In particular, the
recursive model can learn an encoding of the input structured representation according
to the given QSPR task. Hence, RecNN can automatically discover by learning the
specific structural descriptors (numerical code) for the particular task to be solved.
As a result, no a priori definition/calculation and/or selection of input properties are
needed.

More detailed information on the adopted RecNN method can be found in refer-
ences [17–20].

3 Polymer structure representation

The first goal of this work was to find a flexible representation of polymer structure.
The basic idea was to extend the tree representation developed for functional com-
pounds [21] to the polymer repeating unit. Each repeating unit was decomposed by
using almost the same atomic groups, labels, and priority rules used for polyfunctional
compounds (Appendix 6). The tree root was positioned on an additional super-source
vertex (the group “Start”) used to close the highest priority side of the repeating unit.
The other end of the structural unit was capped by a “Stop” group with the only pur-
pose of closing the molecule. Neither the Start nor the Stop groups affect the chemical
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Fig. 1 Structure, chemical tree, input data file, and numerical labels associated with poly(methyl
methacrylate). The input data file contains the dimension of the tree (number of nodes), the value of
the target property, and the connection table. Column 1 of the connection table reports the order number
identifying a specific node, which corresponds to the group indicated in column 2; columns 3–5 indicate
the presence of a “child” identified by its order number (−1 means no child); column 6 reports the numeric
code of the associated numerical label

features of the groups they are linked to. The specific task of the Start group is to
allocate the average characteristics of the macromolecules (molecular weight, stereo-
regularity, polydispersity index, etc.) in its label. In the present study, the Start label
conveyed information of the polymers tacticity as molar fraction of r dyads. The
Start label is a vector orthonormal to all other labels. The Stop label is a null vector.
The Start and the Stop groups were given the highest and lowest priority, respec-
tively. This representation can be extended to deal with copolymers by rooting two
or more repeating units in the super-source vertex that contains information on their
distribution.

The chemical tree of poly(methyl methacrylate) and tree conversion to RecNN
input data file is presented in Fig. 1 as an example. The input data file contains the tree
dimension (number of nodes), the target property value, and the structure connection
table. The numerical labels of the groups and the Start label are reported in the same
figure. This is the representation of the input data used by RecNN to recursively read
the structure, i.e. to access each sub-graph in the encoding process.

4 Experiments

The need for making choices is inherent in preparing any data set from different sources
for correlative and/or predictive purpose. The use of data from several different sources
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is a major cause of the considerable standard deviation found between measured and
fitted Tg values whenever a general correlation is developed. Indeed, in some cases
the reported glass transition temperatures for the same polymer differ by as much
as 80 K. The Polymer Handbook [22] provided most polymer Tg’s in the selected
data set. These data are well-supported by other sources where some data missing
from the Polymer Handbook can be found [1,4,5,7]. Information concerning the Tg
dependence on polymer tacticity were taken from several sources [4,22–33].

The whole polymer set was divided into disjoint training and test sets for learn-
ing and validation processes. Structures were selected in order to make the test set
representative of the various molecular size, topology, and functional groups of the
investigated repeating units. A “guess” set was also built to test the prediction ability
of the RecNN under challenging conditions. More specifically, guess set polymers
have molecular features scarcely represented in the data set and/or highly uncertain
targets. The predicted properties of this special set must be considered individually
and not statistically.

Five different experiments were carried out. In order to have significant appraisal of
the results, sixteen trials were carried out for each RecNN experiment and the results
were averaged over the different trials. The initial connection weights used in each
trial were set at random. Learning was stopped when the maximum error for each
compound of the training set was below the preset value.

In the first experiment, the training and test sets contained 127 and 27 polymer
samples; the guess set was constituted by 3 compounds. The target values ranged
from 162 to 501 K in the training set and from 198 to 413 K in the test set. The lowest
known Tg was chosen for each methacrylic polymer with linear alkyl side chain. As
a result, the input Tg decreases with increasing the number of carbon atoms in the
side chain. The Tg of poly(n-hexadecyl methacrylate) does not follow this pattern.
Therefore, this polymer was included in the guess set. Poly(1H,1H-pentadecafluo-
rooctyl acrylate), whose Tg deviates from the trend of poly(1H,1H-perfluoroalkyl
acrylate)s, was also placed in the guess set. Poly(N-tertbutylmethacrylamide), the
only methacrylamide polymer, was included in the guess set as well. The maximum
error was set at 20 K. The investigated polymers were taken from references that
in most cases did not provide any quantitative information on main chain tacticity
[1,4,5,7,22]. In order to compare samples from different sources, a molar fraction
of r dyads of 0.9, 0.6, and 0.1 was assigned to polymers qualitatively indicated as
syndiotactic, atactic, and isotactic. A 70% content of r dyads was attributed to atac-
tic polymethacrylates, by taking into account their larger tendency to syndiotactic
propagation.

The same training, test, and guess sets were used in the second experiment; how-
ever, the learning was stopped when the maximum error for each compound was below
110 K.

In the third experiment, acrylic and methacrylic polymers containing a linear side
chain with more than eight and twelve carbon atoms, respectively were moved out from
the data set. Some additional samples with known tacticity [4,23–33] were added to
the data set. For this compilation (Table 1), preference was given to reports where the
polymer synthesis was specified, the tacticity was determined by NMR, and the Tg
was measured by DSC. In all other cases, atactic polyacrylates and polymethacrylates
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were assigned a molar fraction of r dyads of 0.6 and 0.7; 1 and 0 were given to
syndiotactic and isotactic samples, respectively. The need for uniformity within the
data set is responsible of the small difference in the molar fraction of r dyads attributed
to isotactic and syndiotactic polymers in experiments 1–2 and 3–5. Consequently, the
r dyad content of some samples arbitrarily changed in passing from experiments 1
and 2 to 3–5. The new splitting of the data set resulted in training, test, and guess
sets containing 137, 26, and 4 samples. The compounds in the guess set were poly
(N-tertbutylmethacrylamide), as in the previous experiments; syndiotactic pol
(isopropyl methacrylate), for which only estimated Tg is available [32]; poly(acrylic
acid), and poly(N-secbutylacrylamide). Differently from all other samples, the last
two polymers can form hydrogen bonds. Moreover, there is only one polyacid in the
training set, poly(methacrylic acid), and a few polyamides with uncertain Tg values.
The target values ranged from 197 to 501 K in the training set and from 208 to 433 K
in the test set. The learning was stopped when the maximum error for each compound
was below 20 K. The fourth and fifth experiments used the same training, test, and
guess sets as the third experiment, but the maximum error was set at 60 and 110 K,
respectively.

For each experiment, the complete list of training, test, and guess sets is given in
Appendix 6, where the target Tg, the molar fraction of r dyads, the mean calculated
output, and the relative standard deviation, σi , over the sixteen trials are reported for
each polymer sample.

5 Results

During the training of the network, different results can be achieved by starting from
diverse initial conditions. In fact, the connection weights of the RecNN model are
initialized at random because of the use of a gradient-based technique to solve a least
mean square problem. This is a general phenomenon for standard neural networks
[34] and other local-search optimization algorithms. Accordingly, sixteen trials were
carried out for the RecNN simulations and the results were averaged over the different
trials. Specifically, the mean and maximum absolute errors, the correlation coefficient
(R) and the standard deviation (S) were obtained by an ensemble averaging method
(Table 2). The number of RecNN hidden units (HU) of each experiment is also reported
together with the number of samples (N ) and the percentage (PTP) of samples that
are present in more than one tactic form in the training and test sets of the different
experiments. As indicated in refs. 17 and 19, the hidden units are the recursive neural
units that compute the values of the encoding function for each input tree.

It is worth noting that a naive approach based on the selection of the best results
over the various trials can lead to an unsatisfactory and unreliable estimation of the
model performance. Moreover, this practice discards potentially useful information
on the model behaviour, which is stored in the discarded regression estimates. The
use of a basic ensemble method avoids these problems while offering an improved
regression estimate.
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Table 1 Names, Tg values, molar fraction of syndiotactic dyads (r ), and relevant references of the
investigated polymers

Name Molar fraction of r dyads Tg (K) Reference

Poly(methyl acrylate) 0.6 281 [33]
0 283 [32]

Poly(ethyl acrylate) 0.6 249 [33]
0 248 [32]

Poly(isopropyl acrylate) 1 270 [4]
0.6 267 [33]
0 262 [32]

Poly(sec-butyl acrylate) 1 253 [22]
0.6 251 [33]
0 250 [32]

Poly(methyl α-chloroacrylate) 1 450 [4]
0.75 424 [31]
0.71 419 [31]
0.59 411 [31]
0.52 409 [31]
0.35 380 [31]
0 358 [4]

Poly(ethyl α-chloroacrylate) 1 404 [23]
0.8 377 [31]
0.71 367 [31]
0.54 356 [31]
0.27 325 [31]
0.16 320 [31]
0 308 [23]

Poly(i-propyl α-chloroacrylate) 1 409 [4]
0.87 402 [31]
0.64 383 [31]
0.36 369 [31]
0.34 366 [31]
0.05 343 [31]
0 341 [4]

Poly(methyl methacrylate) 0.99 403 [26,27]
0.96 396 [25]
0.83 388 [26]
0.79 382 [26]
0.74 378 [26]
0.64 367 [26]
0.01 328 [4,26]

Poly(ethyl methacrylate) 1 393 [23,32]
0.85 359 [27]
0.7 338 [32]
0 281 [33]

Poly(isopropyl methacrylate) 1 412 [32]
0.75 359 [27]
0 307 [27]

Poly(isobutyl methacrylate) 1 393 [32]
0.7 326 [33]
0 281 [33]

Poly(tertbutyl methacrylate) 0.75 391 [28]
0.55 359.5 [28]
0.10 350 [28]
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Table 1 continued

Name Molar fraction of r dyads Tg (K) Reference

Poly(2-hydroxyethyl methacrylate) 0.7 359 [22]
Poly(2-hydroxyethyl methacrylate) 0.2 311 [22]

The results obtained in experiment 1 are satisfactory with a mean error of about 2
and 14 K for the training and the test set, respectively. The standard deviation for the
test set is 19 K, corresponding to 6.5% of the average experimental Tg (292 K). By
taking into account the uncertainty of the target values, in experiment 2 the learning
was stopped when the maximum error was below 110 K. It is worth noting that in this
case the model is under-exploited since a very rough fitting is imposed. Indeed, this
experiment was performed to empirically challenge our method and to gauge the noise
and outliers of experimental data. As expected, the mean errors of both the training
and the test sets are obviously higher than those of the previous experiment (Table 2).
In this case, however, it was important to analyse the mean error for each sample in
the training set. The polyacrylamides with branched side chains, poly(acrylic acid),
and poly(methacrylic acid) showed absolute errors greater than the mean training
error. Differently from others polymers, polyamides and polyacids can form hydro-
gen bonds; therefore, they are often excluded from the experimental data set [5,7].
Moreover, the Tg of strongly polar polymers is significantly affected by the sample
moisture content.

When tacticity information was available, atactic and syndiotactic samples pre-
sented larger errors than isotactic ones. Nonetheless, in spite of the limited number
of polymers present in the training set with more than one tacticity form, the RecNN
correctly calculated the relative position of the Tg outputs for poly(isopropyl methac-
rylate) series in the test set of experiments 1 and 2.

In all cases, the absolute errors increased with the number of carbon atoms in the
side chain; the largest absolute errors (all above the mean training error) correspond
to polymers with long ester chains. Very likely, the RecNN could not find a single
structure-Tg relationship for polymers with long side chains. Indeed, the RecNN had
to deal with different trends within different polymer classes.

The effects of alkyl branching in polymers was noted by many researchers [1,4,7,
35–39]. The decrease of Tg with the length of side chains is widely believed to be a
plasticising effect of the side chains [35]. The recoil takes place when the number of
side-chain methylenes reaches 18 for poly(n-alkyl methacrylate)s, and 7 for poly(n-
alkyl acrylate)s [7]. An increase of the brittle point of n-alkyl polymethacrylates and
polyacrylates starting from poly(n-dodecyl methacrylate) and poly(n-octyl acrylate),
respectively was reported by Reheberg and Fisher [36]. The authors pointed out, how-
ever, that the transitions of polymers starting from poly(n-dodecyl methacrylate) and
poly(n-octyl acrylate) represent melting points of crystalline waxes.

Recent studies support the experimental observation that only the melting tem-
perature can be measured for acrylate and methacrylate polymers containing long
n-alkyl side chains [36]. The idea is that the side chains of different monomeric units
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Fig. 2 Computed versus experimental Tg for polymers in experiment 4

from the same or from different macromolecules aggregate because the polar meth-
acrylic main chain and the nonpolar alkyl side chains are immiscible. This leads to
systems, which are more or less phase-separated, but only on a very short range. It
has been shown [37–39] that for poly(n-alkyl methacrylate)s (4 ≤ CH2 ≤ 12) and
poly(n-alkyl acrylate)s (4 ≤ CH2 ≤ 10), there are two coexisting relaxation pro-
cesses with typical features of a dynamic glass transition: a polyethylene-like glass
transition (αPE ) at lower temperature and the conventional glass transition (α) at
higher temperature. The αP E temperature increases with the methylene number, con-
trary to the α-process. Consequently, αP E approaches α with increasing methylene
number. In poly(dodecyl methacrylate) and poly(decyl acrylate) the two relaxation
temperatures are similar and a single relaxation process is observed [37,38]. In the
higher members, Tg(αP E ) occurs slightly below the crystallization onset, thus hin-
dering the observation of main chain Tg that should occur at much lower temperature
[39].

In agreement with the results of experiments 1 and 2 and by taking into account
the above indications, acrylic and methacrylic polymers with more than 8 and 12 side
chain methylenes were moved out of the data set in experiments 3–5. Long side chain
poly(N-alkylacrylamide)s and polyacrylates with long perfluorinated side chains were
taken out as well. On the other hand, the number of polymers present with different
r dyad content almost doubled in going from the data sets of experiments 1 and 2 to
those of experiments 3–5. As a result, RecNN efforts were made more difficult by
the number of information that it was forced to learn. In other words, the RecNN had
to handle a larger number of different Tg’s associated to the same tree and set apart
only by a parameter in the supersource label. Figure 2 presents a plot of computed vs
experimental Tg for polymers in the data set of experiment 4.
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Fig. 3 Dependence of experimental and mean Tg output of training set polymers on r dyad content (Exper-
iment 4)

The performances of test sets 4 and 5 were better than that of experiment 3 in which a
high fitting level was assumed (Table 2). This result supports the hypothesis that a rather
high noise persisted in the experimental data. The occurrence of noisy data discouraged
any further fitting refinement. Indeed, the test set of experiment 4 gave the best results
and experiments 4 and 5 presented a better mean training error/mean test error ratio
than experiment 3. Punctual analysis of the training set outputs of both experiments 4
and 5, calculated at low fitting level, shows that some compounds i.e. poly(cyanoalkyl
acrylate)s, poly(N-alkylamide)s, poly(methacrylic acid), poly(hydroxyalkyl methac-
rylate)s, and poly(fluoroalkyl methacrylate)s are outliers. This empirical observation
is a RecNN indication of the target uncertainty for these compounds. The learning
difficulty of the RecNN is reflected in the Tg prediction of the test set polymers of the
same classes.

Analysis of the test set predictions of tactic polymer series is of paramount sig-
nificance for verifying the real RecNN knowledge of the Tg-tacticity dependence.
However, preliminary analysis of the training series of polymers with different molar
fractions of r dyads is needed. The dependence of computed Tg in experiment 4 on
the r dyad content is presented in Fig. 3 for the most interesting polymers. This exper-
iment can be taken as a typical example of the RecNN performance in dealing with
polymer tacticity. In all cases, the RecNN found an almost linear dependence of Tg
on the molar fraction of r dyads. The slope of the regression fit decreased in going
from experiment 3 to 5 (Fig. 4). However, the RecNN still learned the stereoregularity
information even at the highest tolerance level.

The training outputs of polyacrylates have rather large errors and uncertainty, and
the differences between the calculated Tg’s of syndiotactic and isotactic forms are
larger than the difference between experimental values. In fact, differently from poly-
methacrylates, the Tg of these polymers is almost independent of main chain stereo-
regularity. The learning of the poly(alkyl acrylate)s was obviously affected by the
behaviour of the other polymers.
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Fig. 4 Dependence of the mean Tg output from experiment 3–5 for poly(methyl chloroacrylate) samples
with different molar fractions of r dyads

Fig. 5 Dependence of experimental and mean Tg output on r dyad content of test set polymers
(Experiment 4)

Analysis of the test set results clearly shows that the RecNN correctly predicts
the Tg-tacticity dependence of poly(ethyl acrylate), poly(ethyl methacrylate), and
poly(isobutyl methacrylate) (Fig. 5). In particular, the output for these polymers cor-
rectly held the ranking of the target values, for each trial and in the averaged results.
On the other hand, the RecNN performance was hampered in the poly(ethyl methac-
rylate) series; in this case, the Tg difference between syndiotactic and isotactic forms
is 112 K, well above the difference found for any polymer series in the training set
(a few Kelvin for poly(alkyl acrylate)s, 75 K for poly(methyl methacrylate), and from
68 to 96 K for poly(alkyl chloroacrylate)s).
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Table 3 Target, mean output, and standard deviation, σ , obtained in the test set of experiment 4 for polymer
samples with different r dyad content

Polymer sample Molar fraction
of r dyads

Target (K) Referencea Output (K) σ (K)

Poly(ethyl acrylate) 0.60 249 [33] 254 20
0 248 [32] 224 20

Poly(ethyl methacrylate) 1 393 [32] 339 20
0.85 359 [27] 330 19
0.70 324 [4]

338 [32] 321 19
343 [6]
351 [5]
354 [5]

0 281 [33] 272 20
Poly(isobutyl methacrylate) 1 393 [32] 350 21

0.7 321 [4]
340 [5]
326 [33] 335 23

0 281 [33] 294 26
a When more target values were available for the same tacticity, only the values from references [32] and
[33] were taken into account as the most reliable

It is worth noting that the experimental Tg for poly(ethyl methacrylate)s does not
show a linear dependence on main chain tacticity. This behaviour is different from that
of any other polymer in the training and test sets. Nonetheless, the mean errors in the
predicted values of the test set are in the same range as literature data spread (30 K) for
stereoregular polymers (Table 3). The steadiness of the mean output and the standard
deviation for poly(ethyl methacrylate) throughout all learning levels (Experiments
3–5) can be taken as a RecNN hint of flawed experimental values. This indication
is supported for instance by the identical reported Tg’s of poly(ethyl methacrylate)
and poly(isobutyl methacrylate), either isotactic or syndiotactic (Table 3). Moreover,
the reported glass transition temperatures of syndiotactic poly(ethyl methacrylate)
and poly(isobutyl methacrylate) are only estimated values [32]; the target values of
isotactic poly(ethyl methacrylate) and poly(isobutyl methacrylate) were obtained by
dilatometry; the samples stereoregularity was attributed by considering only the poly-
merisation method and it was not verified by NMR measurements [33].

Analysis of the guess set results highlighted some remarkable findings (Table 4).
The mean calculated output for poly(acrylic acid) is excellent by taking into account
the intricacy of the predictive work. Nevertheless, the high standard deviation indicates
that the RecNN has a low confidence in the output, reflecting the lack of information
on that compound. In the case of poly(N-secbutylacrylamide), the error and standard
deviation reflect the difficulty met by the RecNN when learning polyacrylamides in the
training set. By taking this into account, the poly(N-tertbutylmethacrylamide) result
is surprisingly good. Finally, the RecNN calculated a lower Tg value for isotactic
poly(isopropyl methacrylate) than that reported in the literature [32].

The potential of the selected model to take into account the extent and type of ste-
reoregularity of the polymer chains is of paramount importance because of the impact
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of this feature on many material properties. On the other hand, only a few authors try
to correlate the Tg of polymers with their tacticity. Camelio’s method [5,6] for Tg
prediction makes calculation on a polymer segment of 20 repeat units to reduce the
calculation time. However, a larger polymer segment (up to 50 units) should be con-
sidered to have a random distribution of repeating units [5]. Karasz and Mac Knight
developed the most widely referenced model that rationalise the Tg dependence on
the polymer stereoregularity [32]. They collected the available data for the glass tran-
sition temperature of vinyl polymers of the general formula –[CH2–CP(Q)]m– and
they observed that the steric configuration affects Tg only if P is different to Q and
neither P nor Q are hydrogen [23,31,32].

One weakness of the reported methods is that for each polymer structure the used
data sets must contain Tg values for different degrees of stereoregularity. On the other
hand, our method allows for the contemporary treatment of polymers whose Tg is
known at different tacticity degrees, together with atactic polymers and polymers
whose Tg is known only at a given tacticity.

6 Conclusions

The proposed representation of polymer structure can convey information on both
repeating unit structure and average polymer features. The capacity of the adopted
RecNN to treat this structured representation makes our method more general and
flexible with respect to standard literature procedures. In fact, when properly trained,
the RecNN seems to be able to predict the dependence of the target property on
either the polymer structure alone or both polymer structure and average properties.
Moreover, the same model can handle polymers present in only one stereotactic form
together with samples with a wide range of stereoregularity. The need for using differ-
ent models to correlate different features to a defined target property is thus overcome.
Analysis of the results clearly shows that the experimental Tg’s of training set poly-
mers are well reproduced. Moreover, the mean error of the predicted values in the test
set is in the same range as literature data spread.

The RecNN uses a very small number of hidden units to solve the computational
problem at the low fitting level imposed by the data noise. In other words, the Rec-
NN considers the learning and prediction of the Tg data an easy computational task,
if little significance is given to the most noisy data. With respect to other literature
methods, the prediction ability of the proposed RecNN is rather good. Moreover, the
reported analysis is useful to pick the most uncertain Tg data out of the data sets. This
enable to exploit the RecNN, beside prediction, for data cleaning and data assessment
purposes.

The RecNN potential was tested on an almost homogeneous class of homopoly-
mers, but we plan to extend the data set to several classes of homopolymers, and
then to copolymers. Indeed, the polymer representation was built bearing in mind the
possibility of a potentially extension to deal with any polymer structure.

Moreover, analysis of the internal polymer representation computed by the RecNN
could give a glimpse on the most relevant molecular features extracted by the RecNN
for the Tg prediction. Indeed, this analysis proved very useful for the interpretation of
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the RecNN learning process in the prediction of acyclic organic compound �solvG◦
[21] and benzodiazepine activity [19].

Acknowledgments The financial support by MIUR PRIN projects is gratefully acknowledged.

Appendix 1: Representation of polymer structure

The repeating unit is partitioned in the following groups: CH3, CH2, C, H aliphatic, H
aromatic, CF3, CF2, C=C, C≡C, OH, O, C=O, NH2, NH, N, SH, S, S=O, CN, NO3,
F, Cl, Br, I. A numerical label is associated with each group. The labels discriminate
among different groups of atoms and do not contain any physical–chemical informa-
tion. The labels are represented by 27-bit vectors, with one or a few specific bits turned
on and all others turned off. Sharing bits between different labels allows for repre-
senting similarity among chemical groups. Orthonormal vectors represent groups of
different chemical nature. In particular:

• H aliphatic and H aromatic have orthonormal numerical labels.
• CH3, CH2, and C have similar numerical labels.
• CF3 and CF2 have similar numerical labels.
• N, NH2, and NH have similar numerical labels.
• OH and O have orthonormal labels.
• SH and S have orthonormal labels.
• F, Cl, Br, and I have similar numerical labels.

The tree root is positioned on a super-source vertex (the group “Start”) used to close
the highest priority side of the repeating unit. The other end of the structural unit is
capped by a “Stop” group with the only purpose of closing the molecule. Neither the
Start nor the Stop groups affect the chemical features of the groups they are linked
to. The Start label is a vector orthonormal to all other labels that conveys the average
characteristics of macromolecules (molecular weight, stereoregularity, polidispersity
index, etc.). The Stop label is a null vector. The Start and the Stop groups have the
highest and lowest priority, respectively.

Priority scale

In aliphatic chains, the most substituted group has higher priority (C > CH2 > CH3 >

H). A group containing a heteroatom has higher priority than any other group. In mol-
ecules with different heteroatoms, the C=O group has the highest priority. The priority
decreases going to the right (N > O > F) and down (O > S; F > Cl > Br > I) in the
periodic table. CF2 and CF3 have higher priority than CH2 and CH3, but lower than
heteroatoms.
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Edges order

The edges starting from a node are ordered according to priority rules. If two (or more)
substituents in a node have the same priority, the groups along the substituent chains
are ranked until a point of difference is reached.

Appendix 2: Results obtained in experiments 1–5

See Tables 5 and 6.

Table 5 (a) Training set, (b) test set and (c) guess set, experiments 1 and 2

Polymer sample Molar
fraction
of r dyads

Target
Tg (K)

Experiment 1 Experiment 2

Out (K) σ (K) Out (K) σ (K)

(a) Training set
Poly(acrylic acid) 0.6 379 379 2 400 19
Poly(methyl acrylate) conv 0.6 283 283 4 301 31
Poly(ethyl acrylate) conv 0.6 249 248 3 260 14
Poly(ethyl acrylate) syn 0.9 249 260 5 277 15
Poly(ethyl acrylate) iso 0.1 248 237 6 239 12
Poly(propyl acrylate) 0.6 236 236 3 238 14
Poly(isopropyl acrylate) conv 0.6 267 266 3 279 11
Poly(isopropyl acrylate) syn 0.9 271 279 4 294 11
Poly(isopropyl acrylate) iso 0.1 262 255 7 260 12
Poly(n-butyl acrylate) 0.6 219 220 6 227 10
Poly(isobutyl acrylate) 0.6 249 249 2 262 21
Poly(secbutyl acrylate) conv 0.6 251 249 3 258 14
Poly(secbutyl acrylate) syn 0.9 253 260 4 274 14
Poly(secbutyl acrylate) iso 0.1 250 242 7 235 14
Poly(n-penthyl acrylate) 0.6 216 214 3 221 13
Poly(neopenthyl acrylate) 0.6 295 296 3 279 24
Poly(n-hexyl acrylate) 0.6 216 214 4 219 8
Poly(n-hepthyl acrylate) 0.6 213 212 5 220 13
Poly(2-hepthyl acrylate) 0.6 235 234 3 233 16
Poly(n-octyl acrylate) 0.6 208 209 5 218 10
Poly(n-nonyl acrylate) 0.6 215 216 2 229 12
Poly(n-dodecyl acrylate) 0.6 270 272 6 218 10
Poly(n-hexadecyl acrylate) 0.6 308 306 6 218 10
Poly(2-methylbutyl acrylate) 0.6 241 243 4 243 12
Poly(3-methylbutyl acrylate) 0.6 228 228 2 240 12
Poly(2-methyl-pentyl acrylate) 0.6 235 236 3 233 15
Poly(1,3-dimethylbutyl acrylate) 0.6 258 258 3 264 24
Poly(2-ethylhexyl acrylate) 0.6 223 223 4 226 14
Poly(2-methyl-7-ethyl-4-undecyl acrylate) 0.6 253 254 4 242 23
Poly(3-thiabutyl acrylate) 0.6 213 214 3 225 14
Poly(3-thiapentyl acrylate) 0.6 202 202 3 218 14
Poly(4-thiahexyl acrylate) 0.6 197 200 5 219 9
Poly(5-thiahexyl acrylate) 0.6 203 203 3 217 9
Poly(fluoromethyl acrylate) 0.6 288 287 3 293 33
Poly(2,2,2-trifluoroethyl acrylate) 0.6 263 263 3 260 24
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Table 5 continued

Polymer sample Molar
fraction
of r dyads

Target
Tg (K)

Experiment 1 Experiment 2

Out (K) σ (K) Out (K) σ (K)

Poly(1H,1H-pentafluoropropyl acrylate) 0.6 247 247 3 251 28
Poly(3-chloro-2,2-bis(chloromethyl)propyl acrylate) 0.6 319 319 2 319 34
Poly(1H,1H-heptafluorobutyl acrylate) 0.6 243 242 5 241 11
Poly(1H,1H,3H-hexafluorobutyl acrylate 0.6 251 251 2 243 8
Poly(1H,1H-nonafluoropentyl acrylate) 0.6 236 235 5 231 14
Poly(1H,1H,5H-octafluoropentyl acrylate) 0.6 238 238 3 242 14
Poly(cyanomethyl acrylate) 0.6 433 434 2 374 24
Poly(2-cyanoisopropyl acrylate) 0.6 339 338 2 338 31
Poly(2-cyanoisobutyl acrylate) 0.6 324 325 2 339 29
Poly(4-cyanobutyl acrylate) 0.6 233 234 4 242 18
Poly(2-cyanohexyl acrylate) 0.6 358 359 3 346 39
Poly(2-cyanoheptyl acrylate) 0.6 389 387 5 354 23
Poly(5-cyano-3-oxapentyl acrylate) 0.6 250 249 3 234 14
Poly(4-cyano-3-thiabutyl acrylate) 0.6 249 249 4 250 22
Poly(5-cyano-3-thiapentyl acrylate) 0.6 214 214 3 224 7
Poly(6-cyano-4-thiahexyl acrylate) 0.6 215 214 3 221 14
Poly(8-cyano-7-thiaoctyl acrylate) 0.6 223 223 2 229 15
Poly(2-methoxyethyl acrylate) 0.6 223 222 3 236 13
Poly(3-methoxypropyl acrylate) 0.6 198 199 2 225 14
Poly(3-ethoxypropyl acrylate) 0.6 218 218 3 220 7
Poly(3-methoxybutyl acrylate) 0.6 217 216 3 219 11
Poly(acrylamide) 0.6 438 438 2 430 23
Poly(N,N-dimethylacrylamide) 0.6 362 362 2 357 27
Poly(N-isopropylacrylamide) 0.6 358 359 3 364 21
Poly(N-n-butylacrylamide) 0.6 319 319 3 295 24
Poly(N-secbutylacrylamide) 0.6 390 390 3 354 20
Poly(N-terbutylacrylamide) 0.6 401 401 2 379 28
Poly(N,N-dibutylacrylamide) 0.6 333 333 2 320 32
Poly(N-(1-methylbutyl)acrylamide) 0.6 380 380 3 353 32
Poly(N-n-octylacrylamide) 0.6 220 220 3 241 21
Poly(N-n-octadecylacrylamide) 0.6 162 161 3 237 18
Poly(ethyl ethacrylate) 0.6 300 299 2 319 20
Poly[(methyl α-methoxycarbonylmethylacrylate 0.6 372 372 3 381 21
Poly(ethyl β-ethoxycarbonylmethacrylate) 0.6 325 324 3 333 26
Poly(n-hexyl β-hexyloxycarbonylmethacrylate) 0.6 269 270 2 264 22
Poly(methyl fluoroacrylate) 0.6 404 405 3 404 15
Poly(ethyl fluoromethacrylate) 0.6 316 316 2 325 17
Poly(methyl β-chloroacrylate) 0.6 416 416 3 363 34
Poly(ethyl α-chloroacrylate) 0.6 366 369 3 360 11
Poly(ethyl α-chloroacrylate) 10% iso 0.1 308 318 4 325 8
Poly(ethyl α-chloroacrylate) 100% syn 0.9 404 391 5 376 12
Poly(n-butyl α-chloroacrylate) 0.6 330 331 3 332 19
Poly(propyl α-chloroacrylate) 0.6 344 345 3 353 22
Poly(n-butyl α-cyanoacrylate) 0.6 358 356 3 340 22
Poly(isopropyl α-chloroacrylate) 0.6 363 364 3 368 18
Poly(methyl α-cyanoacrylate) 0.6 433 432 4 414 23
Poly(methacrylic acid) 0.7 501 501 2 457 33
Poly(methyl methacrylate)a 0.7 376 369 3 358 17
Poly(methyl methacrylate) iso 0.1 311 314 4 320 17
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Table 5 continued

Polymer sample Molar
fraction
of r dyads

Target
Tg (K)

Experiment 1 Experiment 2

Out (K) σ (K) Out (K) σ (K)

Poly(methyl methacrylate) syn 0.9 378 381 4 367 17
Poly(ethyl methacrylate) a 0.7 338 334 4 315 17
Poly(ethyl methacrylate) iso 0.1 285 285 4 275 15
Poly(ethyl methacrylate) syn 0.9 339 345 3 325 19
Poly(propyl methacrylate) 0.7 308 307 3 304 17
Poly(n-butyl methacrylate) 0.7 293 293 6 279 11
Poly(n-butyl methacrylate) iso 0.1 249 249 7 242 10
Poly(isobutyl methacrylate) a 0.7 321 323 2 328 16
Poly(isobutyl methacrylate) iso 0.1 281 278 4 290 21
Poly(isobutyl methacrylate) 80% syn 0.8 326 328 2 333 15
Poly(terbutyl methacrylate) a 0.7 377 364 3 358 18
Poly(terbutyl methacrylate) syn 0.9 387 380 3 368 20
Poly(2-hydroxyethyl methacrylate) 80% iso 0.2 311 314 5 308 16
Poly(2-ethylsulfinylethyl methacrylate) 0.7 298 297 5 284 25
Poly(2-nitratoethyl methacrylate) 0.7 328 329 2 338 24
Poly(2-ethylbutyl methacrylate) 0.7 284 284 3 289 26
(b) Test set
Poly(terbutyl acrylate) 0.6 316 317 55 321 36
Poly(3-penthyl acrylate) 0.6 267 246 34 261 27
Poly(2-octyl acrylate) 0.6 228 216 2 229 12
Poly(tetradecyl acrylate) 0.6 297 301 14 218 10
Poly(2-ethylbutyl acrylate) 0.6 223 231 20 242 18
Poly(4-thiapentyl acrylate) 0.6 208 207 21 216 15
Poly(heptafluoro-2-propyl acrylate) 0.6 278 334 69 324 61
Poly(5,5,5-trifluoro-3-oxapentyl acrylate) 0.6 235 239 26 243 21
Poly(2-cyanoethyl acrylate) 0.6 277 290 31 302 36
Poly(2-cyanobutyl acrylate) 0.6 384 360 22 346 38
Poly(6-cyano-3-thiahexyl acrylate) 0.6 215 220 21 226 26
Poly(2-ethoxyethyl acrylate) 0.6 223 226 32 228 14
Poly(N,N-diisopropylacrylamide) 0.6 393 343 43 364 36
Poly(N-n-dodecylacrylamide) 0.6 198 211 46 239 20
Poly(butyl β-butoxycarbonylmethacrylate) 0.6 298 304 45 288 18
Poly(methyl fluoromethacrylate) 0.6 357 374 34 383 28
Poly(methyl chloroacrylate) 0.6 413 409 5 404 14
Poly(secbutyl chloroacrylate) 0.6 347 365 37 373 31
Poly(isopropyl methacrylate) a 0.7 354 339 32 345 26
Poly(isopropyl methacrylate) iso 0.1 300 289 37 308 26
Poly(isopropyl methacrylate) syn 0.9 358 351 32 354 28
Poly(secbutyl methacrylate) 0.7 333 329 37 323 14
Poly(n-octyl methacrylate) 0.7 253 224 35 238 18
Poly(3,3-dimethylbutyl methacrylate) 0.7 318 309 38 307 32
Poly(diethylaminoethyl methacrylate) 0.7 289 292 23 294 34
Poly(1H,1H,7H-dodecafluoroheptyl methacrylate) 0.7 286 271 33 299 24
Poly(2-hydroxypropyl methacrylate) 0.7 349 363 41 385 40
(c) Guess set
Poly(n-hexadecyl methacrylate) 0.7 288 198 15 233 21
Poly(1H,1H-pentadecafluorooctyl acrylate) 0.6 256 239 35 235 12
Poly(N-terbutylmethacrylamide) 0.7 433 394 45 389 36
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